
Cyanobacteria, Blooms and Nutrients

Greg Boyer

State University of New York
College of Environmental Science
and Forestry, Syracuse, NY

https://coastwatch.glerl.noaa.gov/modis/region map.html

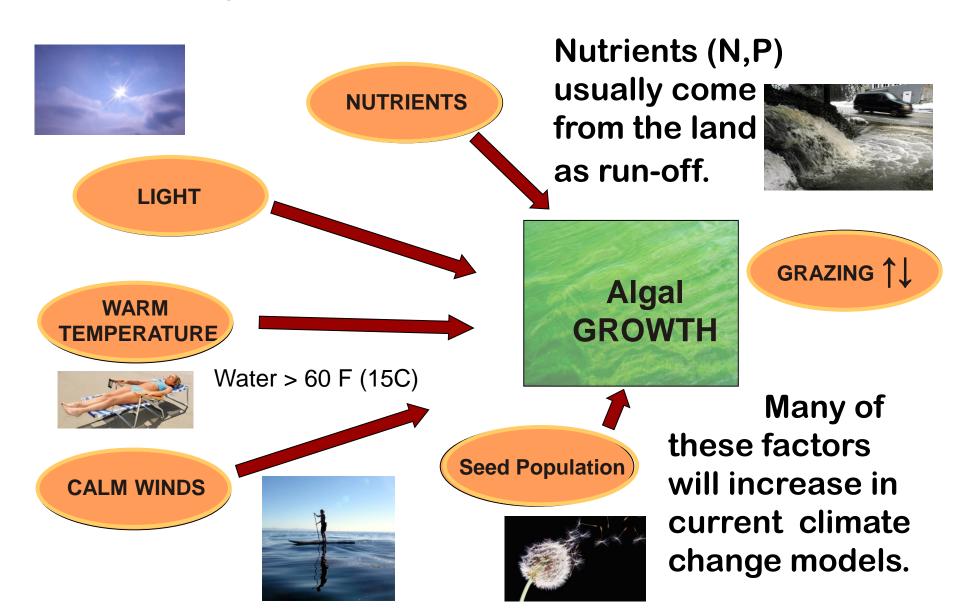
Q1. What are cyanobacteria?

Approximately 8000 species of cyanobacteria

- 3 billion years of evolution
- Humans: 6 million years

Blue-green Algae (BGA) are a very diverse plant-like group

very well adapted to life Some float,

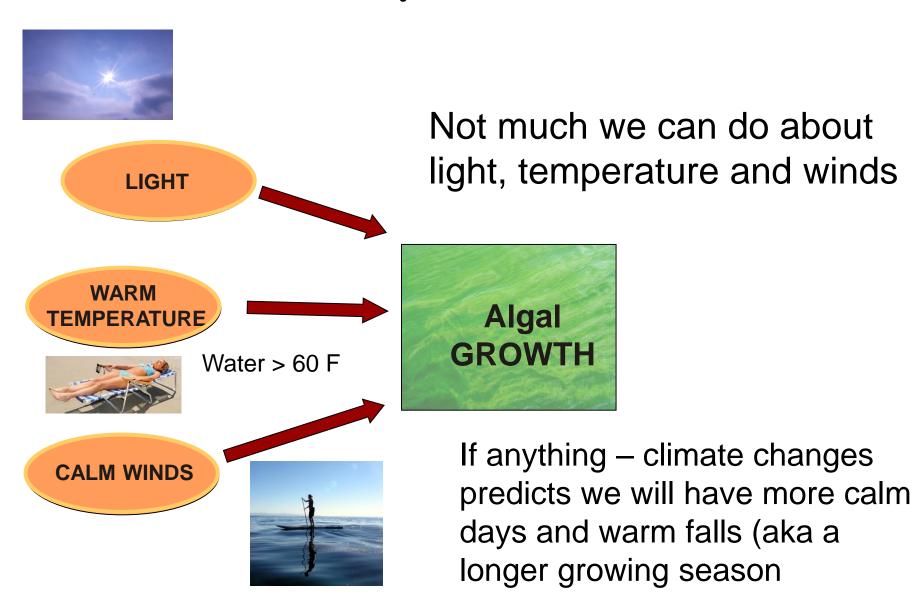

Some fix nitrogen,

Some forms blooms,

Some are toxic; some not

Grow slow: peak in August

Q2. Why do blooms form?


How do we prevent blooms?

We know the seed population is there

 Zebra mussels may promote blooms or "harvest blooms", best bet is to keep them out of the system.

How do we prevent blooms?

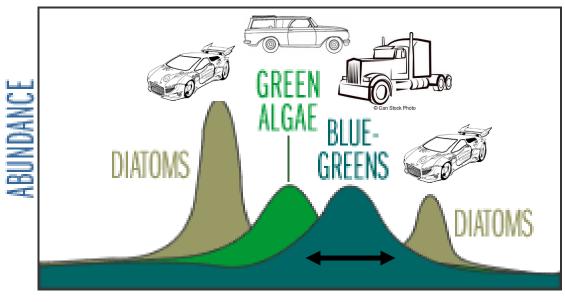
How do we prevent blooms?

NUTRIENTS

Nutrients (N,P) usually come from the land as run-off.

That brings us to nutrients.....

It is not the only thing important, it is the only thing we can control.



Blue-green algae don't care what is the source of nutrients. control both episodic and continual inputs

How does climate change fit in?

JAN FEB MARAPR MAYJUN JULIAUG SEP OCT NOV DEC

Q3. Why are they called Harmful?

- Cyanobacteria are a common member of the aquatic flora!
- Some (not all) produce:
 - liver toxins (heptotoxin).
 - Neurotoxins
 - Other nasty compounds
 - Swimmers itch
 - Alzheimer's-like agents.

Temperature

SHALLOW LAKE

• When they die – it uses up oxygen.

Especially important in stratified lakes

What is the difference between *Microcystis* and microcystins?

- Microcystis aeruginosa
 - non-N fixer.
 - Likes organic N
 - forms surface blooms
 - Mix of toxic and non-toxic species.
- Very common genera
 - Found in every water body
- Can exist in toxic, nontoxic and potentially toxic forms.
 - Liver toxin: microcystins
 - Cell wall may be allergenic to some.

A wee bit of history on HABS in the Finger Lakes

% of samples with detectable Microcystins (n); maximum value in ug/L												
2004	2006	2007	2010	2011	2012	2013	2014	2015	2016	2017	2018	
		10% (10)								4% (52)	5% (42)	Otisco Lake
0% (3)		0.1					0% (2)			0.56	2.1	- Clisco Edike
15% (7)										57% (82)	21% (47)	Skaneateles Lake
0.2										214	205	-
33% (6)				100% (3)		100% (2)	33% (9)	73% (26)	80% (40)	32% (59)	20% (45)	Owasco Lake
0.2		0% (26)		2500		40	75	800	2000	1803	1355	
00//5		00/ /40)			007 (4)		00/ (5)	00((4)	85% (7)	9% (43)	25% (96)	Cayuga Lake
0% (5)		0% (18)			0% (1)		0% (5)	0% (4)	150	730	1060	-
00/ (2)			00/ (2)				00/ (0)	11% (9)	20% (10)	72% (70)	(108)	Seneca Lake
0% (3)			0% (2)				0% (9)	70	33	390	620	
20% (5) 0.1										19% (21) 623	(108) 620	Keuka Lake
40% (5)			100% (1)					93% (15)		30% (27)	2% (47)	_
0.4	0% (2)		40			0% (2)		50	0% (8)	632	246	Canandaigua Lake
42% (9)	070 (2)		100% (2)			95% (25)	7% (57)	4% (71)	12% (80)	10%	7% (9)	_
1			????			????	3	80	5	(104) 5	0.4	Honeoye Lake
										10% (19)		
0% (4)										0.2	0% (14)	Canadice Lake
											, ,	
0% (4)										0% (54)	0% (96)	Hemlock Lake
33% (6)										5% (36)		Conocus Lako
0.1									0% (1)	1	0% (44)	Conesus Lake

We really did not see a lot of toxic HABs in the finger lakes 15 years ago